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HYDRODYNAMICS WITH QUADRATIC PRESSURE.

2. EXAMPLES

UDC 532.516+517.95A. P. Chupakhin

Exact solutions of Euler equations that describe the motion of an ideal incompressible fluid with
quadratic pressure are studied. The solutions are described by explicit formulas and can be physically
interpreted. The dynamics of a spherical fluid volume is studied for specified initial velocity fields.
It is shown that under certain initial conditions, the spherical volume can evolve into a torus-shaped
body, thereby changing the connectivity of the region occupied by the fluid.

Introduction. The present paper is a continuation of [1], in which we give an algorithm for integrating and
the general properties of solutions of the Euler equations

Du+∇p = 0, divu = 0 (1)

with quadratic pressure

p = k(t)(x2 + y2 + z2)/2. (2)

In this paper, we use the notation of [1].
If the Jacobian matrix J = ∂u/∂x has an eigenvalue with a multiplicity of 2, the elliptic functions of time

defining the flow dynamics reduce to rational functions. The Lamé equation describing fluid particle trajectories
becomes an equation with a rational potential. The solutions are written in elementary functions but describe
nontrivial motion of the fluid. If we specify the initial velocity fields u0 = u0(x0) such that the matrix J0 = ∂u0/∂x0

has constant algebraic invariants and trJ0 = 0, we obtain examples of exact solutions of the Euler equations with
pressure in the form (2). A common feature of these solutions is the presence of a singularity in motion —
degeneration of the dimension of the region occupied by the fluid.

Integration of the Equations of Trajectories. Let the Jacobian matrix J have an eigenvalue λ = λ(t)
with a multiplicity of 2 and a basis of its eigenvectors exist in R3(x). Then, as is shown in [1], we have

λ1 = λ2 = λ = λ0(1 + λ0(t0 − t))−1, λ3 = −2λ, (3)

where λ0 = λ(t0) is an arbitrary real number. In this case,

k = 2k2/3 = −(1/3) trJ2 = −2λ2.

The equations of trajectories become

d2x

dt2
− 2λ0

(1 + λ0(t0 − t))2
x = 0. (4)

The fundamental system of solutions of each equation in system (4) consists of the functions

q1 = τ−1, q2 = τ2, (5)

where τ = 1 +λ0(t0− t). The Wronskian of the system of solutions (5) is a constant W (t) = W0 = −3. The general
solution of Eqs. (4) subject to the initial data
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x|t=0 = x0, u|t=0 = u0(x0)

is written as
x = [λ0(2q1 + q2)x0 + (q1 − q2)u0(x0)]/(3λ0). (6)

For all solutions, the pressure has the form

p = p0(t)− λ2
0τ
−2r2,

where p0(t) is an arbitrary function such that p > 0 for all times. Obviously, p→∞ as τ → 0.
The singular points of the solution of the linear system (4) are the singular point of the coefficients [singularity

of the eigennumber of (3)] and an infinitely distant point: τ = 0, t = t0 +λ−1
0 and τ =∞, t =∞. Then, solution (6)

can be considered in the half-intervals

T1: −∞ < t < t0 + λ−1
0 , T2: t0 + λ−1

0 < t < +∞. (7)

We consider several examples of solutions with different initial velocity fields u0 = u0(x0).
Example 1. The initial velocity field is defined by the formulas

u0 = −2x0 + 3U(y0, z0), v0 = y0, w0 = z0 (8)

with an arbitrary smooth function U of their arguments (λ0 = 1). The equations of trajectories (6) for the initial
data (8) take the form

x = Uτ−1 + (x0 − U)τ2, y = τ−1y0, z = τ−1z0, (9)

where τ = 1 + t0 − t.
The motion of each fluid particle occurs in the plane

Π: z0y − y0z = 0 (10)

and is defined by the cubic curve
y2x = y−1

0 Uy3 + (x0 − U)y2
0 . (11)

According to Newton’s classification of cubic curves [2], curve (11) belongs to the fourth group (hyperbolic conic
sections). A special feature of curves in the form of (11) is that in plane (10) there are two asymptotes: y = 0
(multiple of 2) and y = y0U

−1x. Definition of the function U = U(y0, z0) determines the position of the curve on
the plane and the slope of the asymptote. Variation of the function U does not change the type of the curve.

The fluid motion described in Lagrangian coordinates by formulas (9) is written in Euler coordinates as

u = 3τ−2U − 2τ−1x, v = τ−1y, w = τ−1z, (12)

where U = U(yτ, zτ).
The Jacobian matrix of the velocity field (12) has the form

J =

 −2τ−1 −3τ−1U1 −3τ−1U2

0 τ−1 0

0 0 τ−1

 , (13)

where Ui (i = 1, 2) are partial derivatives of the function U with respect to its arguments. The matrix J (13) has
eigenvalues λ1,2 = τ−1 and λ3 = −2τ−1; the logarithmic potentials of the eigenvalues are q1,2 = τ−1 and q3 = τ2.
We can choose the following right eigenvectors:

r1 = 3(−U1U2, U2, 0)T, r2 = 3(U1U2, 0,−U1)T, r3 = (1, 0, 0)T,

where the superscript “T” denotes transposition of the vector (ri are column vectors). In this case, the representation
for the vortex ω [1] has the form

ω = τ−1(r1 + r2) + 0 · τ2r3 = 3(0, τ−1U2,−τ−1U1)T.

A fluid volume that is initially bounded by the sphere x2
0 + y2

0 + z2
0 = 1 evolves with time into a volume bounded

by the surface

τ2(y2 + z2) + (x− Uτ−1)2τ−4 + 2U(x− Uτ−1)τ−2 + U2 = 1,

where U = U(yτ, zτ) = U(y0, z0).
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Fig. 1

Fig. 2

Figures 1 and 2 show the trajectories (11) and dynamics of the fluid sphere for U = sin(y2
0 + z2

0) and t0 = 0.
Figure 1 shows a trajectory of a fluid particle in the plane z0 = 10 for (x0, y0) = (1, 3). Various branches of
curve (11) correspond to the motion in the half-intervals T1 and T2 of type (7). As y0 > 0, the upper branch of
curve (11), on which y > 0, corresponds to values t < 1, and the lower branch, on which y < 0, has values t > 1.
These branches correspond to motions of different asymptotic forms: on the upper branch, y → +0 as t→ −∞ and
on the lower branch, y → −0 as t→ +∞.

Figure 2 shows the evolution of the spherical volume with approach to different singular points: t → 1
(Fig. 2a and b) and t → −∞ (Fig. 2c). Special features of the motion are the loss of dimensionality and the
degeneration of the region. The degeneration patterns are different. Thus, as t → 1, the sphere flattens out to
an almost flat manifold, and as t → ∞, the sphere stretches to a needle. Similar special features were found and
studied by Ovsyannikov [3] for motion with a linear velocity field.

Example 2. In Cartesian coordinates, the initial velocity field has the form

u0 = x0 + q0 cos(bz0), v0 = y0 − q0 sin(bz0), w0 = −2z0, (14)

where q0 and b are arbitrary real parameters. In the cylindrical coordinates x0 = r cosψ and y0 = r sinψ, the vector
field (14) has the form

V0c = r + q0 cos(ψ + bz0), W0c = −q0 sin(ψ + bz0), w0 = −2z0,

where V0c and W0c are the radial and circular velocity components. For the vector field (14), λ0 = 1 such that
τ = 1 + t0 − t. The equations of trajectories (6) are represented by the equations

x = τ−1x0 + (q0/3)(τ−1 − τ2) cos(bz0), y = τ−1y0 + (q0/3)(τ−1 − τ2) sin(bz0), z = τ2z0.
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Fig. 3

A plane Π in which a fluid particle with initial data [x0,u0(x0)] in the form of (14) moves is defined by the equation

(x− τ−1x0) sin(bz0)− (y − τ−1y0) cos(bz0) = 0

into which we substitute τ = |z/z0|1/2 for z0 6= 0. If z0 = 0, the motion occurs in the plane z = 0. The dynamics of
fluid particles that, at t0 = 0, occupied a volume bounded by a sphere x2

0 + y2
0 + z2

0 = a2 (a = const) is described
by the equations

x = aτ−1 sin θ cosϕ+ (q0/3)(τ−1 − τ2) cos(ab cos θ),
(15)

y = aτ−1 sin θ sinϕ+ (q0/3)(τ−1 − τ2) sin(ab cos θ), z = aτ2 cos θ,

where the standard spherical coordinates a, θ, and ϕ (0 6 θ 6 π and 0 6 ϕ 6 2π) define the boundary of the region
at any time in the half-intervals (7).

Figure 3 show the evolution of surface (15) at various times with approach to one of the singular points:
t → 1 (a) and t → −∞ (b). In this case, a = 1, b = 6, and q0 = 3. In Fig. 3a, t = 0.2, and as t → 1, the
height of the spiral turn tends to zero. In Fig. 3b, t = −0.6, and as t → −∞, the sphere evolves into a spiral arc,
which becomes thin and develops in space with time. The volume of the indicated regions is preserved by virtue of
incompressibility of the fluid and it is equal to the volume of the initial sphere. In this example, the singularity of
the motion is also manifested in degeneration of the dimensionality of the region.

Example 3. In Cartesian coordinates, the initial velocity field has the form

u0 = x0 − σr−1y0z0, v0 = y0 + σr−1x0z0, w0 = −2z0, (16)

where r =
√
x2

0 + y2
0 and σ is a real parameter. In the cylindrical coordinates x0 = r cosψ and y0 = r sinψ, the

vector field (16) takes the form

V0c = r, W0c = σz0, w0 = −2z0, (17)

where V0c and W0c are the radial and circumferential velocity components in the plane Ox0y0, and w0 is the velocity
component along the axis Oz0.

The equations of trajectories (6) take the form

x = τ−1x0 − σ(τ−1 − τ2)z0 sinψ, y = τ−1y0 + σ(τ−1 − τ2)z0 cosψ, z = τ2z0. (18)

The trajectory of a fluid particle that starts at t0 = 0 from the point x0 with a velocity u0(x0) (16) lies in the plane

(x− τ−1x0) cosψ + (y − τ−1y0) sinψ = 0. (19)

We should substitute τ = |z/z0|1/2 into Eq. (19). A surface consisting of trajectories of the fluid particles can be
constructed in the following manner: Excluding the quantity τ from Eqs. (18), we obtain the relation

(x− |z0/z|1/2x0)2 + (y − |z0/z|1/2y0)2 = σ2z2
0(|z0/z|1/2 − z/z0)2. (20)
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Fig. 4

Fig. 5

In R
3(x), relation (20) defines the surface of revolution whose axis passes through the points O(0, 0, 0) and

P0(x0, y0, z0), and the distance from the generatrix of the surface to the axis is R(z) = σ|z0|||z/z0|1/2 − z/z0|.
The trajectory of the fluid particles is obtained when the plane (19) intersects the surface (20). The singularities of
this surface [as follows from Eq. (20)] are the degeneration into a point on the axis at z = z0, contraction (neck) at
|z/z0|1/2 = − 3

√
2, asymptotic approach to the plane z = 0, and spreading over this plane from two sides as z → ±0

(flattening).
We consider the dynamics of a fluid sphere bounded by the sphere x2

0 + y2
0 + z2

0 = a2 at t0 = 0. On the
sphere with radius a, we introduce the coordinates θ and ϕ. Then, the evolution of fluid particles of the sphere is
defined by the equations

x = a[τ−1 sin θ cosϕ+ (σ/3)(τ−1 − τ2) cos θ sinϕ],
(21)

y = a[τ−1 sin θ sinϕ+ (σ/3)(τ−1 − τ2) cos θ cosϕ], z = aτ2 cos θ.

Since the coordinates (21) depend linearly on the radius a, the motion of the fluid particles occurs layer-by-layer.
All points of the fluid sphere, except for those lying on the axis Oz0, have nonzero radial and circumferential velocity
components. The particles lying on the axis Oz0 move along this axis to the center of the sphere. The vortex of the
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initial velocity field (17) has the form (also in cylindrical coordinates) ω0 = (−σ, 0, σr−1z0) such that ω3 becomes
infinite on the sphere axis. Such specificity of the initial velocity field leads to violation of the connectivity of the
region during motion. It is easy to show at any time that Eqs. (21) describe a torus-shaped body that has an
internal cavity.

A consequence of relations (21) is the boundary equation in the form

τ2(x2 + y2) + τ−4b(τ)z2 = a2, (22)

where b(τ) = 1− (σ2/9)(1− τ3)2. As follows from Eq. (22), the torus-shaped surface evolves, and at various times,
it can be an ellipsoid with a cavity (b > 0), a hollow cylinder (b = 0), and a one-cavity hollow hyperboloid (b > 0).

Figure 4 shows the evolution of the sphere with approach to the singular point t = 1 at times t = 0.2 (a)
and 0.6 (b). Figure 5 shows various stages of the sphere dynamics for t < 0: an ellipsoid at t = −0.1 (a), a hollow
cylinder at t = 1− 3

√
2 (b), and a hyperboloid at t = −0.4 (c). Singularities of the motion are the degeneration of

dimensionality of the region occupied by the fluid and the flattening of the sphere with time. As in the previous
examples, the volume of this region does not change with time.

The question of the existence of such solutions is connected with the problem of the applicability limits of
the ideal incompressible fluid model.

Conclusions. In the case of a multiple eigenvalue of the matrix J = ∂u/∂x, solutions of the Euler
equations (1) with quadratic pressure in the form of (2) form a broad class described by simple formulas and
characterized by the nontrivial geometry and physics of motion. Such motions always have a singularity which is
manifested in flattening or stretching of the region occupied by the fluid.

Examples of evolution are given for a fluid volume that has a spherical shape at the initial time. The initial
velocity field is given for which the connectivity of the region is violated during motion.
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